Mapping Air Quality with Kite-Based Sensors
Monitoring the concentration of environmental pollutants is critical for effective decision-making about how to improve air quality. The use of Unmanned Aerial Vehicles (UAV) such as drones is attractive to provide detailed data about the spatial variation of air quality metrics; however, UAVs have flight times limited by battery life, public acceptance of UAVs is challenging, and there are increasingly stringent restrictions on the safe operating zones for UAVs. This project explores an alternative kite-based system for aerial monitoring of air quality. Kites have the potential to be lower cost than UAVs, require less energy to operate, and may have operational advantages such as flying at higher wind speeds and in areas inaccessible to UAVs. This project extends past work using kites for environmental monitoring by evaluating several potential improvements: (1) flight control multi-line kites to maneuver the kite precisely throughout the wind window and (2) suspension of a lightweight air sampling tube from the kite system to ground-based sensing equipment.
Monitoring the concentration of environmental pollutants is critical for effective decision-making about how to improve air quality. The use of Unmanned Aerial Vehicles (UAV) such as drones is attractive to provide detailed data about the spatial variation of air quality metrics; however, UAVs have flight times limited by battery life, public acceptance of UAVs is challenging, and there are increasingly stringent restrictions on the safe operating zones for UAVs. This project explores an alternative kite-based system for aerial monitoring of air quality. Kites have the potential to be lower cost than UAVs, require less energy to operate, and may have operational advantages such as flying at higher wind speeds and in areas inaccessible to UAVs. This project extends past work using kites for environmental monitoring by evaluating several potential improvements: (1) flight control multi-line kites to maneuver the kite precisely throughout the wind window and (2) suspension of a lightweight air sampling tube from the kite system to ground-based sensing equipment.


